tel:0371-888-888

当前位置:主页 > 常见问题 >

常见问题

电源研发的过程中的常见问题秒速时时彩计划人

  在电源研发的过程中,我们总会遇到这样或者那样的问题,这里有大牛多年研发电源问题及解答,一起学习吧!

  我们小功率用到最多的反激电源,为什么我们常常选择 65K 或者 100K(这些频率段附近)作为开关频率?有哪些原因制约了?或者哪些情况下我们可以增大开关频率?或者减小开关频率?

  开关电源为什么常常选择 65K 或者 100K 左右范围作为开关频率,有的人会说 IC 厂家都是生产这样的 IC,当然这也有原因。每个电源的开关频率会决定什么?

  应该从这里去思考原因。还会有人说频率高了 EMC 不好过,一般来说是这样,但这不是必然,EMC 与频率有关系,但不是必然。想象我们的电源开关频率提高了,直接带来的影响是什么?当然是 MOS 开关损耗增大,因为单位时间开关次数增多了。如果频率减小了会带来什么?开关损耗是减小了,但是我们的储能器件单周期提供的能量就要增多,势必需要的变压器磁性要更大,储能电感要更大了。选取在 65K 到 100K 左右就是一个比较合适的经验折中,电源就是在折中合理化折中进行。

  假如在特殊情形下,输入电压比较低,开关损耗已经很小了,不在乎这点开关损耗吗,那我们就可以提高开关频率,起到减小磁性器件体积的目的。

  本贴关键:如何选择合适 IC 的开关频率?主流 IC 的开关频率为什么是大概是这么一些范围?开关频率和什么有关,说的是普遍情况,不是想钻牛角尖好多 IC 还有什么不同的频率。更多的想发散大家思维去注意到这些问题!

  我这里想说的普遍情况,主要想提的是开关频率和什么有关,如何去选择合适开关频率,为什么主流 IC 以及开关频率是这么多,注意不是一定,是普遍情况,让新手区理解一般行为,当然开关电源想怎么做都可以,要能合理使用。

  1、你是如何知道一般选择 65 或者 100KHZ,作为开关电源的开关频率的?(调研普遍的大厂家主流 IC,这二个会比较多,当然也有一些在这附近,还有一些是可调的开关频率)

  2、又是如何在工作中发现开关电源开关频率确实工作在 65KHZ,或 100KHZ 的。(从设计角度考量,普遍电源使用这个范围)

  3、有两张以上的测试 65KHZ100KHZ 频率的图片说明吗?(何止二张图片,毫无意义)

  4、你是否知道开关电源可以工作在 1.5HZ.(你觉得这样谈有必要,工作没有什么不可以,纯熟钻牛角尖,做技术切记钻牛角尖,那你能谈谈为什么普遍电源不工作在 1.5HZ,说这个才有意义,你做出 1.5HZ 的电源纯属毫无意义的事情)

  提醒:做技术人员切记钻牛角尖,咱们不是校园研究派,是需要将理论与实践现结合起来,做出来的产品才是有意义的产品!

  LLC 中为什么我们常在二区设计开关频率?一区和三区为什么不可以?有哪些因素制约呢?或者如果选取一区和三区作为开关频率会有什么后果呢?

  LLC 的原理是利用感性负载随开关频率的增大而感抗增大,来进行调节输出电压的,也就是 PFM 调制。并且 MOS 管开通损耗 ZVS 比 ZCS 小,一区是容性负载区,自然不可取。那么三区,开关频率大于谐振频率,这个仍是感性负载区,按道理 MOS 实现 ZVS 没有问题,确实如此。但是我们不能忽略副边的输出二极管关断。也就是原边 MOS 管关断时,谐振电流并没有减小到和励磁电流相等,实现副边整流二极管软关断。这也是我们通常也不选择三区的原因。

  我们不能只按前人的经验去设计,而要知道只所以这样设计是有其必然的道理的!

  当我们反激的占空比大于 50%会带来什么?好的方面有哪些?不好的方面有哪些?

  反激的占空比大于 50%意味着什么,占空比影响哪些因素?第一:占空比设计过大,首先带来的是匝比增大,主 MOS 管的应力必然提高。一般反激选取 600V 或 650V 以下的 MOS 管,成本考虑。占空比过大势必承受不起。

  第二点:很重要的是很多人知道,需要斜坡补偿,否则环路震荡。不过这也是有条件的,右平面零点的产生需要工作在 CCM 模式下,如果设计在 DCM 模式下也就不存在这一问题了。这也是小功率为什么设计在 DCM 模式下的其中一个原因。当然我们设计足够好的环路补偿也能克服这一问题。

  当然在特殊情形下也需要将占空比设计在大于 50%,单位周期内传递的能量增加,可以减小开关频率,达到提升效率的目的,如果反激为了效率做高,可以考虑这一方法。

  反激的一大劣势就是效率问题,改善效率有哪些途径可以思考的呢?减小损耗是必然的,损耗的点有开关管,变压器,输出整流管,这是主要的三个部分。

  开关管我们知道反激主要是 PWM 调制的硬开关居多,开关损耗是我们的一大难点,好在软开关的出现看到了希望。反激无法向 LLC 那样做到全谐振,那只能朝准谐振去发展(部分时间段谐振),这样的 IC 也有很多问世,我司用的较多是 NCP1207,通过在 MOS 管关断后,下一次开通前 1 脚检测 VCC 电压过零后,然后在一个设定时间后开通下一周期。

  同步整流一般在输出大电流情况下,副边整流流二极管,哪怕用肖特基损耗依然会很大,这时候采用同步整流 MOS 替代肖特基二极管。有些人会说这样成本高不如用 LLC,或者正激呢,当然没有最好的,只有更合适的。

  电源的传导是怎么形成的?传导的途径有哪些?常用的手段?电源的辐射受哪些东西影响?怎么做大功率的 EMC。

  电源传导测量方式是通过接收输入端口 L,N,PE 来自电源内部的高频干扰(一般 150K 到 30M)。

  如图:一般有二种模式:L,N 差模成分,以及通过 PE 地回路的共模成分。有些频率是差共模均有。

  通过滤波的方式:一般采用二级共模搭配 Y 电容来滤去,选择的方式技巧也很重要,布板影响也很大。一般靠近端口放置低 U 电感,最好是镍锌材质,专门针对高频,绕线方式采用双线并绕,减少差模成分。后级一般放置感量较大,在 4MH 到 10MH 附近,只是经验值,具体需要与 Y 电容搭配。X 电容滤差模也需要靠近端口,一般放在二级共模中间。放置 Y 电容,电容布板时走线需要加粗,不可外挂,否则效果很差。(这些只是输入滤波网络上做文章)

  当然也可以从源头上下手,传导是辐射耦合到线路中的结果,减弱了开关辐射也能对传导带来好处。影响辐射的几处一般有 MOS 管开通速度,整流管导通关断,变压器,以及 PFC 电感等等。这些电路上的设计需要与其他方面折中不做详述。

  一些经验技巧:针对大功率的 EMC 一般需要增加屏蔽,立竿见影,屏蔽的部位一般有几处选择:

  第一:输入 EMI 电路与开关管间屏蔽,这对 EMC 有很大的作用,很多靠滤波器无效的采用该方法一般很有效果。

  第三:散热器的位置能很好充当屏蔽,合理布板利用,散热器接地选择也很重要。

  第四:判断辐射源头位置,一般有几个简单的方法,不一定完全准确,可以参考,输入线套磁环若对 EMC 有好处,一般是原边 MOS 管,输出线套磁环若对 EMC 有效果,一般是副边输出整流管,尤其是大于 100M 的高频。可以考虑在输出加电容或者共模电感。

  当然还有很多其他的细节技巧,尤其是布板环路方面的,后面对 LAYOUT 会单独讲解。

  设计电源的第一步不知道大家会想到什么呢?我是这么想,细致研究客户的技术指标要求,转换为电源的规格书,与客户沟通指标,不同的指标意味着设计难度和成本,也是对我提出的问题有很大的影响,选择拓扑时根据我们的电源指标结合成本来考虑的,哪常用的几种拓扑特点在哪呢 ?

  反激特点:适用在小于 150W,理论这么说,实际大于 75W 就很少用,不谈很特殊的情况。反激的有点成本低,调试容易(相对于半桥,全桥),主要是磁芯单向励磁,功率由局限性,效率也不高,主要是硬开关,漏感大等等原因。全电压范围(85V-264V)效率一般在 80%以下,单电压达到 80%很容易。

  正激特点:功率适中,可做中小功率,功率一般在 200W 以下,当然可以做很大功率,只是不常常这么做,原因是正激和反激一样单向励磁,做大功率磁芯体积要求大,当然采用 2 个变压器串并联的也有,注意只谈一般情形,不误导新人。正激有点,成本适中,当然比反激高,优点效率比反激高,尤其采用有源箝位做原边吸收,将漏感能量重新利用。

  半桥:目前比较火的是 LLC 谐振半桥,中小功率,大功率通吃型。(一般大于 100W 小于 3KW)。特点成本比反激正激高,因为多用了 1 个 MOS 管(双向励磁)和 1 个整流管,控制 IC 也贵,环路设计业复杂(一般采用运放,尤其还要做电流环)。优点:采用软开关,EMC 好,效率极高,比正激高,我做过 960W LLC,效率可达 96%以上(全电压)(当然 PFC 是采用无桥方式)。其它半桥我不推荐,至少我不会去用,比较老的不对称桥,很难做到软开关,LLC 成熟以前用的多,现在很少用,至少艾默生等大公司都倾向于 LLC,跟着主流走一般都不会错。

  全桥:一般用在大于 2KW 以上,首推移相全桥,特点,双向励磁,MOS 管应力小,秒速时时彩计划人工-秒速时时彩计划群比 LLC 应力小一半,大功率尤其输入电压较高时,一般用移相全桥,输入电压低用 LLC。成本特别高,比 LLC 还多用 2 个 MOS。这还不是首要的,主要是驱动复杂,一般的 IC 驱动能力都达不到,要将驱动放大,采用隔离变压器驱动,这里才是成本高的另一方面。

  推挽:应用在大功率,尤其是输入电压低的大功率场合,特点电压应力高,当然电流应力小,大功率用全桥还是推挽一般看输入电压。变压器多一个绕组,管子应力要求高,当然常提到的磁偏磁也需要克服。这个我真没用过,没涉及电力电源,很难用到它的时候。

  设计电源,成本评估必不可少,目前客户将电源的成本压得很低,各大竞争对手无不都在打价格战,大家都能做出电源来,就看谁做得更便宜,才能赢得订单,从哪些方面入手有利于我们陈本呢:

  第一:技术指标。电源技术指标越高,成本越高,如果你的电源成本高了,那你可以打你的性能指标卖点,多了性能要求,电路增多了成本自然高。也是和客户谈话的资本。

  第二:物料采购成本,为什么大公司电源利润高?无非是他们有着优越的采购平台,采购量大,物料成本低,当然成本更低。如果不考虑采购,作为工程师必须弄清楚不同物料对应的成本,比如能用贴片,少用插件,(比如插件电阻比贴片成本高),能用国产,不用台资,能用台资不用日系,这里的价格差异不菲。(比如日系电容比国产电容价格高几倍不止!!!当然质量也有差异;)

  第三:影响成本的重要器件:变压器,电感,MOS 管,电容,光耦,二极管及其他半导体器件,IC 等。不同的变压器厂家绕出来的变压器价格差异很大,MOS 管应力,热阻选择够用就行,IC 方案的成本等等

  其它方面导致成本问题:器件散热器,大小合适,多了就是浪费钱。PCB 布板,能用单面板用成双面板就是浪费钱,PCB 布板工艺,选择合理的工艺加工成本低,生产效率高。

  电源的环路设计一直是一个难点,为什么这么说,因为主要影响的因素太多,理论计算很难做到准确,仿真也是基于理想化模型,在这里只谈关于环路设计的一些影响因素,从定性的角度去理解环路以及怎么去做环路补偿。

  环路是基于输入输出波动时,需要通过反馈,环路相应告知控制 IC 去调节,维持输出的稳定。电源环路一般都是串联负反馈,有的是电压串联负反馈(CC 模式下),有的是电流串联负反馈(CV



首页|关于我们|产品中心|新闻中心|荣誉资质|工程案例|常见问题|联系我们

秒速时时彩计划人工-秒速时时彩计划群 版权所有